
Source Localization of Graph 
Diffusion via Variational 
Autoencoders for Graph 
Inverse Problems

Joint work with Junji Jiang, Junxiang
Wang, and Liang Zhao

Aug 14, 2022

Presented by: Chen Ling

The 28th SIGKDD Conference on Knowledge 
Discovery and Data Mining (KDD 2022)

chen.ling@emory.edu

lingchen0331.github.io



Outline

Background
Proposed
Method –
SL-VAE

Experiment Concluding
Remarks



Graph Information Diffusion
§ As a prevalent data structure, graph can represent various network-structured data.

§ The ubiquity of networks has also made us vulnerable to various network risks.

(a) Social Network (b) Computer Network (c) Smart Grid Network
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Graph Diffusion and Source Localization
§ Information diffusion occurs on graph and has been studies for decades. 

§ Information Diffusion Estimation aims to predict the future graph diffusion patterns 
given source nodes.

§ Its inverse process – source localization aims to locate diffusion sources given the 
observed graph diffusion pattern. 

Observed 
Diffusion 
Pattern



Limitations of Existing Works
§ Existing works in graph source localization are proposed as deterministic algorithm to 

compute sources directly from the diffusion observation. 

§ However, multiple set of source nodes in graph information diffusion may lead to the 
same diffusion cascade pattern.



Potential Solution and Challenges
§ As an ill-posed inverse problem of diffusion prediction, source localization needs to 

locate the diffusion source from all feasible sources.

Question: Can we quantify the uncertainty in the 
ill-posed source localization problem?

Solution: Deep generative models can characterize the 
latent distribution of sources so to quantify the 

uncertainty.

Any Potential Challenges?



Challenge 1: Quantifying Uncertainty in Graph 
Source Localization
§ Quantifying the uncertainty requires building a probabilistic model between the source 

and observation so that one can estimate the “optimal” source to the observation. 

§ However, approximating the conditional probability needs to consider the graph 
topology since graph topology is essential and dominates the diffusion process.

Graph

1. Graph topology determines the 
diffusion process.

2. the probability distribution of 
graph data is hard to optimize



Challenge 2: Characterizing the Intrinsic Patterns 
of Diffusion Sources
§ Characterizing the patterns of diffusion sources also conditioned on the intrinsic 

nature of the nodes and their connections. 

§ Such information is apart from the diffused observations but can predominantly help 
determine the sources.

§ Consider a rumor source detection task in a social network:
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Challenge 3: Generalizing under any underlying 
diffusion patterns
§ Most existing source localization methods are tailored for specific diffusion processes 

such as Linear Threshold, Independent Cascade, and Epidemic models.

§ Apart from the prescribed diffusion processes, the diffusion principle in real-world 
scenarios are more complex and cannot be described by mathematical models.

How can we impose to 
generalize under any 

diffusion patterns?
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SL-VAE: Variational Inference 
§ The diffusion source set is defined over 𝑉 as 𝑥 = 0, 1 |"|, 𝑥# = 1 or 0 denotes seed node or not.

§ The probability of each node being infected is defined as 𝑦 = [0, 1]|"| (diffused observation).

§ We Utilize the Maximum A Posteriori (MAP) to estimate the optimal diffusion source: 
*𝑥 = arg max

$
𝑝 𝑦 𝑥, 𝐺 ⋅ 𝑝 𝑥 = arg max

$
𝑝 𝑥, 𝑦 𝐺

§ Motivated from deep generative models: we map high-dimensional and intractable 𝑝 𝑥 to 
latent variable 𝑧 in lower dimension.

§ The latent variable 𝑧 is obtained by the posterior 𝑝(𝑧|𝑥, 𝑦, 𝐺).

§ Due to the intractability of 𝑝(𝑥), the approximate posterior 𝑞%(𝑧|𝑥, 𝑦, 𝐺) is adopted to infer 𝑧:

Intractable Joint 
Distribution



SL-VAE: Training Objective 
§ We utilize Evidence Lower BOund (ELBO) to approximate the posterior 𝑞!(𝑧|𝑥, 𝑦, 𝐺): 

§ In most information diffusion estimation models, the diffused observation 𝑦 is only 
determined by the diffusion source 𝑥 under the graph 𝐺:

minimize the KL divergence by 
minimizing the negative ELBO

Graph Prior 
Distribution



SL-VAE: Training Objective 

§ We minimize the negative ELBO to jointly train three components:
§ An inference network – encoder 𝑞! 𝑧 𝑥 approximates the posterior.

§ A generation network - decoder 𝑝" 𝑥 𝑧 decodes information from latent variable 𝑧 ∼ 𝑞! 𝑧 𝑥 .

§ A forward information diffusion estimation model 𝑝#(𝑦|𝑥, 𝐺) that takes the diffusion source 
𝑥 ∼ 𝑝" 𝑥 𝑧 and graph 𝐺 to predict the infecting probability 𝑦 of each node.

Information 
Estimation Model

Generation 
Network (decoder)

Inference Network 
(encoder)



Training Objective: Monotonic Constraint on 
Information Diffusion
§ In addition to optimize the variational inference framework (negative ELBO), the 

information diffusion needs to respect the monotone increasing property:
𝑦(#) ⪰ 𝑦(%), ∀ 𝑥 # ⊇ 𝑥 %

§ The assumption is applied in tasks, including influence 
maximization and information diffusion estimation.

§ We update the objective function and optimize the following 
constrained objective:



Predicting the Diffusion Sources
§ The training phase aims to learning the generator 𝑝& 𝑥 𝑧 , and a (arbitrary) diffusion 

estimater 𝑝'(𝑦|𝑥, 𝐺) to predict the optimal diffusion source .𝑥 given the observation 𝑦.

§ Since 𝑝 𝑥 is determined by 𝑝 𝑧 such that 𝑝 𝑥 = ∑( 𝑝& 𝑥 𝑧 𝑝(𝑧), we may marginalize 𝑝 𝑧
and optimize the following MAP problem to find the optimal diffusion source.

§ However, optimizing the above objective function could be problematic:

1. Marginalizing 𝑝 𝑧 would require lots of sampling to match the desired distribution.

2. The objective function does not contain information of the observed diffusion sources.



Diffusion Source Prediction: Objective Function
§ During the VAE training, the latent random variable 𝑧 is sampled from the encoder 
𝑞! 𝑧 𝑥 , where all the parameters are obtained through stable functions of 1𝑥 in the 
training set.

§ we could sample 𝑧 from the posterior distribution 𝑞! 𝑧 𝑥 instead of 𝑝(𝑧) if the VAE 
can approximate the posterior 𝑞! 𝑧 𝑥 to match the prior 𝑝(𝑧).

§ By replacing the prior 𝑝(𝑧) by 𝑞! 𝑧 𝑥 . The objective function for the diffusion source 
prediction is: 1𝑥 denotes diffusion 

sources from the 
training set
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Experiment Setup
Training Data: 
§ Randomly sample 10% nodes as seeds and simulate the 

information diffusion based on epidemic models: 
Susceptible-Infection (SI) and Susceptible-Infection-
Recovery (SIR).

§ Digg and MemeTracker are social networks with real-
world diffusion cascades.

Evaluation Metrics: Classification Scores between the 
predicted sources and the ground truth ones.

Comparison Methods:
§ Diffusion Estimation Models: SL-VAE can be coupled 

with different diffusion estimation models, we select 
STOAs: GAT [1], MONSTOR [2], and DeepIS [3].

§ Source Localization Methods. SL-VAE is compared with
NetSleuth [4], LPSI [5], OJC [6], and GCNSI [7].

[1] Veličković, Petar, et al. "Graph attention networks." arXiv preprint arXiv:1710.10903 (2017).
[2] Ko, Jihoon, et al. "Monstor: an inductive approach for estimating and maximizing influence over unseen networks." ASONAM, 2020.
[3] Xia, Wenwen, et al. "Deepis: Susceptibility estimation on social networks." WSDM. 2021.
[4] Prakash, B. Aditya, et al. “Spotting culprits in epidemics: How many and which ones?”, ICDM 2012.
[5] Wang, Zheng, et al. "Multiple source detection without knowing the underlying propagation model." AAAI. 2017.
[6] Zhu, Kai, et al. "Catch’em all: Locating multiple diffusion sources in networks with partial observations." AAAI. 2017.
[7] Dong, Ming, et al. "Multiple rumor source detection with graph convolutional networks." CIKM. 2019.



Experiment: Flexibility
How accurate does SL-VAE perform in source localization task when equipped with 
various forward diffusion estimation models 𝑝'(𝑦|𝑥, 𝐺)?

§ AUCs for each dataset are above 90% with only one exception.

§ We cannot find noticeable difference in performance between each variant of SL-VAE.



Experiment: Accuracy and Adaptation
§ SL-VAE excels others in terms of both F1 and AUC on average 15% in predicting the 

diffusion sources given the diffused observation under SI diffusion pattern.

§ While others experience a performance decline in recovering sources under real-
world diffusion pattern, SL-VAE still achieves the best by leading the second best 20%.

The performance comparison on source localization under SI diffusion Pattern

The performance comparison on source localization under Real-world diffusion Pattern
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Experiment: Scalability

We record the runtime regarding the number of nodes 
in Digg dataset. Fig. a is the runtime of SL-VAE with 
different forward models; Fig. b is the runtime of SL-
VAE against other source localization algorithms.

1. All variants of SL-VAE demonstrate the linear
runtime with the growth of graph size.

2. Only LPSI has comparable runtime with SLVAE in 
node size (≤ 5,000), other models are slower than 
SL-VAE in operating on large graphs (≥ 8,000).



Experiment: 
Visualization

§ We also present a case study to visually demonstrate 
the performance comparison in recovering the true 
seed nodes. (Karate on the top, Jazz on the bottom.)

§ SL-VAE generates the overall most similar seed 
nodes to the ground truth compared with others. 
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Key Takeaways
§ As one important graph inverse problem, information diffusion source localization is 

an essential yet challenging task with numerous network science applications.

§ SL-VAE utilizes the deep generative models to approximate the intrinsic patterns of 
diffusion sources directly, and leverage an end-to-end optimization way to locate 
diffusion sources based on the diffused observation.

§ Extensive experiments demonstrate the effectiveness of the proposed method and 
empirically prove that SL-VAE can generalize under any information diffusion 
patterns.

Full Paper Code

chen.ling@emory.edu


